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In this paper we consider the dynamics of bubbles near a kidney stone subjected
to a lithotripter shock wave. We address the effect of kidney stone geometry and
composition on the cavitation potential near the stone in a shock wave lithotripter.
The analysis is based on the previously developed work metric in which the work
done on a bubble by the lithotripter shock wave (LSW) is used to determine the
maximum radius the bubble achieves. Results of the reflection of the LSW from
cylindrical kidney stones with proximal surfaces of varying geometry show that the
presence of the stone enhances bubble growth near the stone and decreases growth
further away, owing to constructive and destructive interference, respectively. These
effects hold true regardless of the shape and curvature of the face, and are strongest
for stones with concave faces and higher reflection coefficients. A consequence of
the analysis is an elucidation of the mechanism for enhanced cavitation activity and
creation of deep craters on the proximal side of a kidney stone, as have been observed
in recent experiments.

1. Introduction
Shock wave lithotripsy (SWL), a non-invasive procedure that uses high-energy

lithotriptic shock waves (LSWs) to treat kidney stones, has been used in clinical
settings for over two decades now (Chaussy et al. 1982). In a typical procedure,
approximately 2000 LSWs, generated extracorporeally, are focused at the site of the
stone in order to pulverize the stone into grains that are fine enough to pass through
the urinary system. Although SWL is very successful, the exact mechanism for stone
comminution is still being debated. This is because the form of the LSW – an initial
shock followed by a long rarefaction tail – admits several modes of stone destruction.
One path of destruction is through compression-induced fracture, spallation, and/or
squeezing caused by the leading shock of the LSW (Xi & Zhong 2001; Eisenmenger
2001). Another avenue of comminution is through cavitation damage, caused by the
strong collapse of bubbles created by the long rarefaction tail of the LSW. A more
plausible route combines the two mechanisms. An example might be spallation to
break the stone into small chunks followed by cavitation to erode the chunks into
fine grains.
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In order to assess the different compression-induced comminution mechanisms,
efforts have been made to determine the wave dynamics within kidney stones subjected
to LSWs and how the wave dynamics affect the resulting stress fields. Dahake &
Gracewski (1997) used an elastodynamic formulation to study spherical and ellipsoidal
kidney stones to determine the effect geometry plays on the waves within stones. Xi &
Zhong (2001) used photoelastic and shadowgraph imaging techniques to determine
the stress fields in plaster-of-Paris stone phantoms. They showed that the location
of cracks initiated by spalling depends greatly on the size and geometry of the
stone. Cleveland & Sapozhnikov (2005) used a linear elastic model to show that the
constructive interference of stress waves leads to high peak tensile stresses in stones.

There have also been efforts to investigate cavitation-induced damage to kidney
stones. This type of damage is very clear in the high-speed photographs of kidney
stones in vitro (Sass et al. 1991; Pishchalnikov et al. 2003). The pictures show that
internal fissures created by the LSW become fluid-filled and provide nucleation sites
for cavitation bubbles. These bubbles coalesce and form clusters that, upon collapse,
lead to pits on the proximal end, cracks on the lateral faces, and slight damage on the
distal end of stones. Because cavitation can be very damaging, controlling it to increase
stone comminution has been a primary focus of the field. For example, Sokolov,
Bailey & Crum (2001) developed a dual-pulse lithotripter and Xi & Zhong (2000)
used a piezoelectric annular array generator in conjunction with an electrohydraulic
lithotripter to force cavitating bubbles into stronger collapses.

In this work, we are interested in the interplay between cavitation and wave
dynamics. In particular, we are concerned with the effect stone geometry has on
the wave dynamics in the fluid near a kidney stone, and the subsequent changes
this induces on the cavitation field. Similar studies have been done, but none
have considered the stone in both the wave and bubble dynamics of the cavitation
process. Tanguay (2004) developed a model of shock-wave propagation in a bubbly
liquid mixture to determine the energy released during bubble collapses. However,
he neglected the stone in treating the bubble collapses. Zabolotskaya et al. (2004)
modelled the growth, coalescence and collapse of bubble clusters near a kidney stone.
However, they neglected the effect of the stone on the pressure field and used an LSW
without the reflected wave as the forcing pressure. In the present work, reflections
from the stone are included. We also treat non-spherical bubble growth and collapse
near a stone with an LSW that contains both the incident and reflected waves. We
note that Ohl (2002) accounted for the stone in his work on bubble nucleation, but
did not consider the effect of alterations in stone geometry.

This work is presented in two parts. In Part 1, we determine the pressure
field resulting from the reflection of an LSW from stones of various shapes and
composition. Then the dynamics of spherical bubbles associated with the different
pressure fields are compared to assess the effect stone geometry has on the cavitation
field near a kidney stone. In Part 2 (Calvisi, Iloreta & Szeri 2008), we investigate
the consequences for the energetics of non-spherical collapses near stones using the
pressure field calculated in Part 1 as input.

In both parts, we focus on the regime in which bubble clouds are sparse and
the bubbles behave as though isolated, because this is what has been observed in
experiments in vivo by Bailey et al. (2005). Our methods do not account for changes
in shock dynamics due to the presence of a bubble, as experiments in vitro by
Pishchalnikov et al. (2006) show that an LSW in the free field is not attenuated by
growing bubbles. The experiments also show that an LSW near a kidney stone is
not attenuated if a slow pulse repetition frequency is used, and stone comminution
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Figure 1. (a) A schematic of the cylindrical computational domain. The left, right and top
boundaries are outflow boundaries, and the bottom is a reflective boundary as it serves as the
axis of symmetry for the cylindrical domain. The shock wave (not shown) moves from left
to right. Note that the computational grid is not drawn to scale. In (b) the kidney stone is
enlarged and its dimensional parameters are outlined. Here, the bottom (revolved) half of the
stone is also shown in order to avoid cluttering the dimensions. Note that this bottom half is
not part of the computational domain (a).

is improved as a consequence. Note that our methods do account for the influence
of the pressure wave on the bubble, and include the variations in the pressure field
associated with incompressible liquid motions that accompany changes in bubble
volume, and in Part 2, changes in bubble shape.

Part 1 is organized as follows. In § 2, we outline the methods we employ to determine
the pressure field near a kidney stone. In § 3, we discuss the resulting pressure fields.
In § 4, we determine the radial dynamics of spherical bubbles subjected to the pressure
fields. In § 5, we present conclusions and concerns, and argue that new light has been
shed on the mechanism for stone comminution.

2. Formulation
In this section, we present the numerical model for determining the pressure field

around a kidney stone during SWL. In particular, the model calculates the dynamics
of a shock wave that reflects from a cylindrical kidney stone and the pressure field
that results from the interaction. Figure 1 shows the geometry of the problem. In
figure 1(a), a shock wave (not shown) moves from left to right and is incident on a
cylindrical kidney stone. An enlarged view of the stone is shown in figure 1(b).

The numerical model is based on an earlier scheme by Iloreta et al. (2007) developed
to determine the flow field of a shock wave lithotripter. We outline the key points
of the model for completeness. The flow field is governed by the axisymmetric Euler
equations,

∂

∂t
q +

∂

∂r
F(q) +

∂

∂z
G(q) = S(q), (2.1)

where the variables vector q, the flux vectors F(q) and G(q), and the geometric source
vector S(q) are defined as
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Here ρ(r, z, t) is the fluid density, u(r, z, t) is the axial velocity, v(r, z, t) is the radial
velocity, p(r, z, t) is the pressure, and e(r, z, t) is the total mechanical energy per unit
mass, defined as the sum of the kinetic energy per unit mass |V |2/2 = (u2 + v2)/2 and
the strain energy per unit mass ε =

∫ ρ
(p/ρ̂2) dρ̂.

The system of equations (2.1) is closed by specifying the Tait equation of state
(EOS). With this EOS, the pressure in (2.2) is given by the Tait pressure

p ≡ pth + B =
B + 1

ρn
0

ρn, (2.3)

and (2.2) has the same form as the equation of motion for an ideal gas
(p/ρcp/cv =const). Thus, variables such as the sound speed are defined like those
of an ideal gas. That is, the sound speed is given by c =

√
np/ρ and the strain energy

is given by ε = p/(ρ(n − 1)). In the above, pth is the thermodynamic pressure, cp and
cv are the specific heats at constant pressure and volume, respectively, B (in units of
atm) and n (unitless) are experimentally determined constants, and ρ0 is the density
at atmospheric pressure. The Tait EOS is valid for pressures up to 105 atm with
B = 3000 atm and n= 7 (Batchelor 1967). Unless noted otherwise, hereinafter the Tait
pressure will be implied when pressure is used.

The system of equations in (2.1) along with (2.3) is solved numerically using
CLAWPACK (Conservation LAWs PACKage) (LeVeque 1997). CLAWPACK is a
collection of Fortran subroutines that solves time-dependent hyperbolic systems based
on a wave propagation algorithm. In this work we use the two-dimensional Euler
package with a source term for the cylindrical geometry. The CLAWPACK algorithm
is made second-order accurate with correction terms that use a monotonized-centred
flux limiter. The correction waves are also propagated transversely in the wave
propagation algorithm. The source term is handled using Godunov splitting, where a
simple explicit Runge–Kutta method (the midpoint method) is used to solve the non-
homogeneous equation. The computational domain in our work is a rectangular grid
in the axisymmetric domain; for an example see figure 1 (a). The left, top and right
boundaries are ordinary outflow boundaries, while the bottom boundary is a reflective
boundary because it serves as the axis of symmetry for the cylindrical domain.

2.1. Kidney stone

Rather than modelling the kidney stone as a rigid boundary (Tanguay 2004), in
this work the kidney stone is approximated as an interface between two different
regions within the computational domain (see figure 1a). The interface is defined by
a surface such that grid cells lying inside the surface are in the stone domain while
cells outside are in the fluid domain. Grid cells cut by the surface are given properties
of both domains, weighted by the volume of each domain contained by the grid
cell. To simplify the problem, we model the solid reflector domain as a liquid with
the same EOS (but different properties) as the fluid domain. By doing so, the entire
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computational domain is governed by the same set of equations and eliminates the
need to couple regions together where different equations (e.g. the Euler equations
coupled with the linear elasticity equations) are solved. Moreover, it is a simple matter
to consider stones of different shapes.

The reflection problem is treated by setting the initial properties of the stone domain
such that the reflection coefficient across the water/pseudo-stone computational
interface matches the actual reflection coefficient across the water/stone interface.
In this study, we take the reflection coefficient as the ratio of pressure amplitudes as
opposed to energy amplitudes:

R ≡ p−

p+
=

Z2 cos θi − Z1 cos θt

Z2 cos θi + Z1 cos θt

. (2.4)

Here p− and p+ are the amplitudes of the reflected and incident waves, respectively,
Zj = ρjcj is the impedance of the j th medium, θi is the angle of incidence, and θt is

the angle of transmission. The sound speed cj =
√

npj/ρj , and the angles of incidence
and transmission are related by Snell’s law (c1 sin θt = c2 sin θi). Here, and throughout
the rest of the paper, subscript 1 refers to water and 2 to the kidney stone.

To determine the initial properties of the pseudo-stone in the computational domain,
the actual reflection coefficient across the water/stone interface is first calculated by
using experimentally measured data for density and sound speed in (2.4). Then, the
properties of the pseudo-stone are calculated with an expansion of (2.4) using the
relationships above:

R =

√
(p2/p1)(ρ2/ρ1) cos θi −

√
1 − (p2/p1) sin2 θi

(ρ2/ρ1)

√
(p2/p1)(ρ2/ρ1) cos θi +

√
1 − (p2/p1) sin2 θi

(ρ2/ρ1)

. (2.5)

As (2.5) states, the reflection coefficient of the computational domain is only a function
of the pressure ratio p2/p1, the density ratio ρ2/ρ1 and the angle of incidence θi . Thus,
we are free to vary any or all of these parameters to change the reflection coefficient
in our computational domain. In our scheme, we choose to vary only the density
ratio because a pressure jump induces motion and the angle of incidence is fixed by
the geometry of the stone. Thus, the pseudo-stone is simply modelled as a density
jump across a prescribed boundary. The density ratio ρ2/ρ1 is calculated using (2.5)
with p1 =p2 for a given interface (R) and geometry (θi).

In our tests, we are interested only in the reflection very near the front of the stone
because photographs by Pishchalnikov et al. (2003) show that damage is much greater
to the proximal surface than to the lateral and distal faces. Thus, we need ensure only
that the density of the proximal surface gives an accurate reflection. The density of
the stone is set as follows. The actual reflection coefficient is determined for the kidney
stone of interest. Then, the angle of incidence for a plane wave hitting the front of
the stone is calculated as a function of radius r (see figure 1b). For example, the angle
of incidence is 33◦ for line 1 in figure 2, 54◦ for line 2, and 0◦ for line 3. This step
ensures accurate reflection from the proximal surface; if it is neglected, different parts
of the LSW will reflect from the stone with different reflection coefficients. Finally,
for a given radius, ρ2 is determined from (2.5) with the θi determined at that radius.
Grid points at that radius are given the pseudo-density ρ2. A plane wave is used for
this analysis because the incident LSW is almost planar in the focal region.
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Figure 2. (a) The initial pressure field of the simulations. The initial pressure field is shown in
a linear grey scale with the kidney stone domain in black. (b) The pressure along the symmetry
axis. Note this wave is not yet fully developed, as it has not yet arrived at its focus.

Note that the reflection of the wave (within the kidney stone) from the distal
side of the stone and subsequent re-transmission through the proximal side of the
stone is not modelled because the transmitted wave has negligible amplitude by the
time it re-enters the fluid. Although a naive analysis for the ‘transmission/reflection/
re-transmission’ coefficient of a typical kidney stone shows that

T RT =
4Z1Z2(Z1 − Z2)

(Z1 + Z2)3
≈ 0.4 ,

the experimental results of Pittomvils et al. (1996) show that the actual T RT is almost
zero owing to the microscale heterogeneous internal structure of actual kidney stones
(Zhodi & Szeri 2005). In other words, what is omitted in the simple foregoing analysis
of T RT is the large attenuation of the wave with distance travelled in the stone.

Finally, bubbles on the surface of the stone created by an LSW and their effect on
the reflection coefficient for the next LSW is not considered because the lifetime of
cavitation bubbles is much shorter than the delay time between LSWs (Pishchalnikov
et al. 2003, 2005). Also, bubbles on the surface of the stone created by an LSW do
not affect the reflection coefficient for the same LSW because the bubbles are small
during the residence time of the LSW; it is only when the LSW has long passed that
the bubbles finally grow to an appreciable size.

2.2. Initial conditions

The simulations are initiated with a snapshot from an SWL model by Iloreta et al.
(2007) of a Dornier HM3-like lithotripter. The model is the same as the one we
based this analysis on; the parameters of the simulation are given in Iloreta et al.

(2007). The initialization was implemented by taking the output of the flow variables,
q, from the full SWL model as input to the current simulations. Figure 2 shows the
initial pressure field of the simulations. In the grey-scale plot, a flat-faced kidney
stone is shown in black with the LSW located 15–20 mm in front of the stone (not
yet fully developed). Note that we could have found the flow variables by another
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Figure 3. A typical pressure trace for a point on the symmetry axis for the no-stone test
obtained by our simulation (solid) is compared with experimental data (dotted) measured by
Zhou & Zhong (2003). The point chosen was the location of the proximal face of the kidney
stone in § 3.2. The experimental data were obtained using a clinical HM-3 lithotripter (with
cutouts for the imaging system) charged at 20 kV.

code or through experimental measurements (Averkiou & Cleveland 1999; Tanguay
2004; Zhou & Zhong 2006), but chose to take them from our code for convenience.

3. The pressure field near the proximal stone surface
In this section, we present the pressure fields due to the reflection of an LSW from

various kidney stones and discuss the differences in these fields. In particular, we
analyse the effects of kidney stone shape and composition on the pressure field near
the proximal side of the stone. In all the tests, a cylindrical kidney stone was used. To
test the effect of stone shape on the pressure field, the proximal surface of the stone
was changed. Figure 1 (b) shows the parameters that govern the stone shapes used in
the tests. Here, zoff is the (non-dimensional) distance the proximal face of the stone is
from the second focus of the lithotripter (F2) and γ is the (non-dimensional) standoff
distance (as measured from the stone–liquid interface) along the symmetry axis.

Unless explicitly given, hereinafter all dimensions will be given in non-dimensional
units. For consistency with Part 2 we choose the length scale to be the maximum radius
a bubble located approximately 1 mm from the stone achieves when subjected to the
tensile portion of the LSW in figure 2 (Rm = 1168.83 μm), the pressure scale to be
atmospheric pressure (p0 = 101 325 Pa), and the density scale to be the density of water
at standard temperature and pressure (ρ0 = 998.0 kg m−3). Consequently, the derived
time scale is Rm

√
ρ0/p0 = 116.0 μs and the derived energy scale is p0R

3
m =161.8 μJ.

3.1. No stone

To provide a basis for comparison, the simulation was first run without a stone.
The simulation was run on a 1925 × 825 computational grid. The mesh size was
dx =0.033 and the time step was dt = 8.62 × 10−5. The maximum Courant number
CFLmax = 0.4065 occurred at t = 0.103. The simulation was run for 4000 time steps
and took 38 hours on a Pentium 4 PC. Figure 3 shows a typical pressure trace for
a point on the symmetry axis obtained by our simulation (solid). The point chosen
was the location of the proximal face of the kidney stone (see § 3.2). It is compared
with experimental data (dotted) measured by Zhou & Zhong (2003) to illustrate that
the properties of the pulse used in this study are relevant to SWL. The comparison



50 J. I. Iloreta, N. M. Fung and A. J. Szeri

t = 0.095 t = 0.103 t = 0.112 t = 0.121

t = 0.129 t = 0.138 t = 0.147 t = 0.155

–200 –125 –50 25 100 175 250 325 400

Figure 4. Snapshots of the pressure field at various times are shown in grey scale for reflection
from a flat-faced cylindrical kidney stone. The real pressure in the kidney stone is not shown;
rather it is given a value of 400 to aid visualization. The size of each frame is 8.56 × 8.56.

is excellent except that our simulation does not capture the secondary shock (second
peak at t =0.114) created by the cutouts for the imaging system in the experimental
set-up; the cutouts were non-axisymmetric whereas the simulation was axisymmetric.
Note that the peak of the pulse is almost double that of the initial pulse in figure 2
because the LSW focused as it propagated forward.

3.2. Size of kidney stone

Next we simulated a cylindrical stone with the following dimensions: length
L =6.67, radius rs = 2.82, and z-offset zoff = 12.49. The stone had a flat front so
the hole depth d = 0. A reflection coefficient of R = 0.664 was used because this
corresponds to typical stone data from Pittomvils et al. (1995): ρ1 = 1000 kg m−3,
c1 = 1500 m s−1, ρ2 = 1750 kg m−3, c2 = 4250 m s−1 and θi = 0 (plugging these numbers
into (2.4) yields R =0.664). By (2.5), this corresponded to pseudo-stone properties of
ρ2 = 24 536 kgm−3 and c2 = 295 m s−1. The LSW was initially located at γ = 15.74 on
the proximal side of the stone. The simulation was run on the same grid as that used
for the no-stone case.

Figure 4 shows the pressure field near the proximal surface of the stone at various
times. At t = 0.095–0.103, the LSW is propagating toward the stone, and at t =0.112,
the LSW has just reflected from the stone. At t = 0.112–0.121, we can see the
formation of an edge wave, a circular wave centred at corners of the stone domain.
The edge wave is a toroidal diffraction wave produced by the diffraction of the
incident LSW around the rim of the stone. It is composed of a leading rarefaction
followed by a trailing compression, which is opposite to that of the incident LSW.
At t = 0.129–0.138, the edge wave has focused on the symmetry axis and its two
inner surfaces have passed through one another. The focusing produced a region of
intense tensile stresses around the axis of the stone (light region at t = 0.129). At
t = 0.147–0.155, the reflected wave is long past the kidney stone and incident wave.

The edge wave is of great interest because it significantly enhances the rarefaction
tail in the reflected wave. It is shown in § 4 that this changes the dynamics of bubbles
profoundly. To disaggregate the effects of the edge wave more clearly, a test was
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Figure 5. The pressures along the symmetry axis at various times are shown for reflection
from a flat-faced, finite, cylindrical kidney stone and plane infinite wall: (a) t = 0.121,
(b) t = 0.129, (c) t =0.138, (d ) t = 0.155.

done with a flat infinite wall to eliminate the edge wave. It was the same test as the
foregoing, the only difference being that the stone radius was taken to be infinity;
for the computation this corresponded to rs = 30. The plots of pressure along the
symmetry axis in figure 5 show the results of the test. The effect is most pronounced
in figures 5(b) and 5(c). There it can be seen that the reflection from an infinite
wall did not create an edge wave that focused on the symmetry axis. Thus the
deepening of the rarefaction tail of the reflected wave did not happen. Without the
edge wave, constructive and destructive interference between the incident and reflected
waves were the only mechanisms that affected the pressure field. For the stone case, in
figure 5(a), the shock of the reflected wave destructively interfered with the rarefaction
of the incident wave, and in figures 5(b) and 5(c), the rarefaction of the reflected wave
constructively interfered with the rarefaction of the incident wave. In figure 5(d ), we
see that the reflected wave had the same shape as the incident wave, but with a
lower amplitude because part of the energy was transmitted into the kidney stone.
Furthermore, the trailing compression of the edge wave has the additional effect of
reducing the duration of the reflected rarefaction via destructive interference.

3.3. Curvature of kidney stone

Next we simulated a cylindrical stone with a curved proximal face to show the effects
of stone shape on the pressure field near the proximal surface of the stone. In the
first set of tests, the face had a concave shape given by a paraboloid. A paraboloid
was chosen because it has a focus. The stone had the following dimensions: length
L = 6.67, stone radius rs =2.82, hole radius rh = rs , hole depth d = 0.428, and z-offset
zoff =12.49. The focus of the paraboloid was at a distance a = 4.71. Again, a reflection
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Figure 6. Snapshots of the pressure field at various times are shown in grey scale for reflection
from a kidney stone with (a) a concave full-hole, (b) convex full-hole, and (c) concave half-hole.
The pressure in the kidney stone is not shown. The same grey scale and frame size as in figure 4
is used.

coefficient of R =0.664 was used and the LSW was initially located at γ = 15.74 on
the proximal side of the stone. The simulation was run on the same grid as used for
the no-stone case.

Figure 6(a) shows the pressure field near the proximal surface of the stone at
various times. The focusing of the LSW is easily seen. At t =0.112 the LSW has just
reflected off the stone, at t = 0.121 the LSW has started to focus, and at t =0.129 the
LSW is focused. As in the cases for the flat stones, an edge wave produced by the
rim of the kidney stone focused on the symmetry axis. We note that Sturtevant &
Kulkarny (1976) studied a similar system of weak shocks in air and found similar
results. However, the shocks in their study were canonical shocks in a sense that they
were thin abrupt disturbances. In contrast, the shocks of the present study, composed
of a shock and rarefaction, have an important spatial structure in the direction of
propagation. This complicates the dynamics near the focal region. Unlike the system
studied by Sturtevant & Kulkarny, here our pressure fields are determined from the
interactions of both the compressions and rarefactions of the incident, reflected and
edge waves. Sturtevant & Kulkarny give a detailed description of the focusing of a
shock wave with a parabolic reflector.

To show the effect of stone curvature more clearly, a test was done using a convex
paraboloid. The parameters of the stone were the same as the concave paraboloid
case, the only difference being that the paraboloid was oriented in the opposite
direction. Figure 6(b) shows the result of this test. It is easily seen that the reflected
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Figure 7. The pressures along the symmetry axis at various times are shown for reflection
from a cylindrical kidney stone with a curved proximal face: (a) t =0.116, (b) t = 0.129,
(c) t = 0.138, (d ) t = 0.155.

wave did not focus; instead, it diverged. Furthermore, the edge wave did not focus
as strongly on the symmetry axis because it diverged as well. Another test was done
to determine how the size of the ‘hole’ in the proximal face affects the pressure
field. The test was similar to the concave paraboloid case, but only the centre of the
kidney stone was given curvature; for the computation, the hole radius was rh = rs/2.
Figure 6(c) shows the pressure field near the stone. There, the complicated dynamics
of the multiple reflected and edge waves can be seen.

A more quantitative comparison of the three tests is shown in figure 7. There, the
pressure along the symmetry axis at various times for the three cases is shown. At
t = 0.116, the half-hole case focused. Note that the peak of the pressure wave for the
half-hole case (ppeak = 1362) is not shown for better visualization of the differences
between cases. At t =0.129, the full-hole case focused. However, the peak of the
pressure wave for the full-hole case (again not shown for better visualization) was
about half that of the half-hole case owing to tighter focusing in the latter. The
focusing of the edge wave(s) for all the tests are also seen in this frame. In both
concave tests, the peak negative pressure is about ppn = 207. In the convex test, the
peak negative pressure is about ppn = 173. This is milder than the concave tests
because of the divergence of the edge wave. At t = 0.155, the divergence of the
reflected wave for the convex case is seen as a reduction in pressure amplitude when
compared to the concave cases. Lastly, the duration of the reflected compression is
larger for the convex case than the concave cases because the edge wave arrives at
the symmetry axis a little later owing to the increased distance it has to travel. Thus,
the interference of the edge wave with the reflected compression is reduced.
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Figure 8. The pressure at a standoff distance of 0.86 is shown for flat-faced stones of
varying composition.

3.4. Composition of kidney stone

Finally, we simulated cylindrical kidney stones of varying composition by changing
the reflection coefficient of the stone. The stones had the same dimensions as the
stones in § 3.2 and the simulations were run on the same grid as those stones as well.
Figure 8 shows the pressure at a standoff distance γ = 0.86 for various stones. The
range 0.25 � R � 0.75 was chosen because measurements by Heimbach et al. (2000)
of real and artificial kidney stones showed that the reflection coefficients lie within
this range. The first peak in figure 8 is the incident shock and the second peak is
the reflected shock. The effect of composition is seen through the amplitude of the
reflected wave.

The most important result of this test is that the rarefaction tail of the reflected
wave is greatly affected by the composition of the stone. This is because the
stone composition affects the strength of the reflected wave and, consequently, the
constructive interference of the rarefaction tails of the incident and reflected waves.
For very reflective stones, the interference is high, whereas for slightly reflective stones,
the interference is low. Also, diffraction of the incident wave is greatly affected by the
composition of the stone. For very reflective stones, diffraction is high, whereas for
slightly reflective stones, diffraction is low. In § 4, we show that these effects play a
huge role in the bubble dynamics near kidney stones.

4. Bubble dynamics near the proximal surface of a stone
In this section, we quantify the differences in the pressure fields of § 3 following the

analysis of Iloreta et al. (2007). In their analysis, the authors found that the work
done on a bubble by the LSW correlates well with the maximum radius achieved by
the bubble and argued that maximum radius is the key parameter for characterizing
SWL because it is a good indicator of the damage bubbles could potentially cause
(to the stone and tissue) during the procedure.

To calculate the work done on a bubble from r1 to r2 (t1 to t2),

W =

∫ r2

r1

(force) dr =

∫ t2

t1

(−P × area)ṙdt = −4π

∫ t2

t1

Pr2ṙdt , (4.1)
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Figure 9. Typical pressure waves (a) and the corresponding bubble dynamics (b) are shown.
In (a), the starting points for the integration of (4.2) are marked with a star.

we must first determine the radial bubble dynamics, r(t), associated with the various
external pressure fields P (t). This is done using the Rayleigh equation

ρl

(
rr̈ + 3

2
ṙ2

)
= −P (t), (4.2)

where ρl is the liquid density. Here, a dot represents a time derivative, so ṙ(t) is the
bubble wall velocity and r̈(t) is the acceleration. Equation (4.2) is used instead of a
full Rayleigh–Plesset (RP) equation because Hilgenfeldt et al. (1998) found that only
these terms contribute significantly during the expansion phase of bubble growth. It
is only this phase that is of interest because the shock wave passes long before the
bubble reaches maximum volume. Thus, there is no contribution to (4.1) after the
initial expansion because P (t) = 0. Also, the Rayleigh equation is used instead of the
Gilmore equation because compressible effects are small in the bubble regime we are
interested in. During bubble expansion, the bubble wall Mach number is at most
ṙ/c ∼ 150 m s−1/1500 m s−1 = 0.1.

With the work known, the maximum radius is calculated with the following fit from
Iloreta et al. (2007)

rmax = 0.6238 W 0.337, (4.3)

where rmax and W have been made dimensionless using the length and energy scales
derived in § 3, respectively. The fit was made using a full RP equation that accounted
for gas diffusion, heat transfer, chemical reactions, surface tension and viscous effects.
We note that (4.3) can be interpreted as work being proportional to volume.

Equation (4.2) was solved for the various pressure fields using a Runge–Kutta
solver in Matlab. In all the tests, the initial radius of the bubble was r0 = 0.00385
(4.5 μm) and the initial wall velocity was ṙ0 = 0. The initial radius was not varied
because Church (1989) found that bubbles of initial radii in the range 1–10 μm
achieve essentially the same maximum radius if driven by LSWs with peak positive
pressures greater than 25 MPa. Furthermore, in Part 2, we show that this result also
holds for non-spherical bubbles. Typical pressure waves from our simulations are
shown in figure 9(a). Depending on the standoff distance, the waveforms had either
one or two rarefactions after the leading shock: type I waves had one rarefaction
while types II and III waves had two rarefactions. Here, waves of increasing type
correspond to waves of increasing standoff distance.
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In our tests, we started the integration at the beginning of the first rarefaction in
cases of type I because Church (1989) and Iloreta et al. (2007) have shown that the
maximum bubble size achieved in such flows depends little on the initial conditions.
Clearly, a spherical model is not appropriate in handling the details of the interaction
with the leading shock; it was shown by Ohl & Ikink (2003) that bubbles can lose
minute amounts of mass, and display jetting phenomena in such situations. However,
there is plenty of time after the interaction with the leading compression wave
and before significant growth in the subsequent rarefaction for surface tension and
coalescence to restore the possibly fragmented bubbles before the onset of significant
growth. Thus, the leading shock should not appreciably affect our maximum radii
calculations and can be ignored for computational simplicity.

Likewise, in cases of type II the reflected compression is strong enough to drive a
strong collapse in a bubble that has just begun to expand. By appeal to the slender
dependence on initial conditions previously mentioned, in pressure waves of type II
we assume for simplicity that bubbles are in a state similar to that of our generic
initial conditions when we begin the calculation after the reflected compression. In
support of this, we note the high-speed images by Sankin et al. (2005) show that
bubbles re-expand (non-spherically) to a volume close to that of a spherical expansion
and that the ratio between the diameters along the vertical and horizontal directions
is nearly unity (∼ 1.25). The assumption about type II waves comes into play only
in a localized region away from the stone (see figure 10). In cases of type III, it
was possible to integrate through the (less intense) interaction with the reflected
compression wave. Figure 9(b) shows the dynamics of bubbles corresponding to the
different pressure types.

The maximum radius fields of the various tests are shown in figure 10. Note that
the jagged surfaces of the stone faces are due to the coarseness of the data we saved,
and not due to the coarseness of the computational mesh. There are several things
that stand out in the field plots. (i) The no-stone case is a medium grey throughout
while the other cases have a dark region near the stone and a light region further
removed. This showcases the main effect of the stone: it creates a region of high
cavitation potential near its proximal surface regardless of its shape and curvature.
The extent and intensity of the high-cavitation-potential region is, however, highly
dependent on the geometry and composition of the proximal face of the stone. It is
this issue that we are interested in most, and thus we focus on it in the subsequent
paragraphs. (ii) There are thin white streaks that indicate the region of minimum
cavitation potential caused by the destructive interference between the reflected shock
and incident rarefaction. As we move away from the stone, the reflected shock moves
through and past the incident rarefaction, thus reducing the work done on the bubble
with increasing standoff distance. However, at distances greater than half of the
LSW length (i.e. at distances > 4.3) there cannot be destructive interference. Thus,
destructive interference is a concave function of standoff distance and the location
of the white streak is the location of maximum interference (i.e. lowest cavitation
potential). (iii) The concave stones exhibit regions of low cavitation potential around
the symmetry axis away from the stone. This is due to the focusing of the reflected
shock waves along the axis (Sturtevant & Kulkarny 1976), and consequently, the
suppression of bubble growth there.

These effects, as well as the mechanisms discussed in § 3, are more clearly seen
in the rmax vs. γ plots of figure 11. There, the maximum radii achieved along the
symmetry axis for the different test cases are compared. Note that for small γ , the
maximum radii were larger than the standoff distance. This is non-physical because
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Figure 10. The maximum radius (mm) fields are shown for the various cases tested in § 3:
(a) no stone, (b) flat stone, (c) infinite wall, (d ) convex full-hole, (e) concave half-hole, and
(f ) concave full-hole. The radius fields in the kidney stones are given a value of 1.2 to aid
visualization. Outlined by the light black lines are the localized regions in which bubble
collapses due to the reflected compression wave are sufficiently strong that we expect the
bubble fragments; hence we start the bubble dynamics following the reflected compression.

the stone makes the bubble grow asymmetrically at short distances and rmax may not
be achieved. However, this analysis provides a first approximation to the changes of
the bubble dynamics near a kidney stone in SWL. In Part 2, it is shown that the work
correctly predicts the maximum volume – even for highly non-spherical bubbles.

In figure 11(a), the effect of the edge wave is seen through the differences in rmax

for the infinite-wall case as compared with the flat-stone case. For the parameters
tested, the maximum radii were higher by about 0.086 near the stone for the infinite
wall and lower by about 0.128 away from the stone. This is counterintuitive because
we would expect bubbles to grow larger near the stone for the flat-stone case because
the edge wave deepens the rarefaction. However, this is not the case because of
the structure of the edge wave: a tensile part followed by a compressive part. This
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Figure 11. The maximum radii attained on the symmetry axis for the various cases tested in
§ 3 are compared.

structure, specifically the compressive part, creates a compression tail that follows the
rarefaction of the reflected wave. Note that the rarefaction of the reflected wave is
deepened by the tensile part of the edge wave. Figure 9(a) shows the compression
tail as a slight rise in the pressure traces from t = 0.08 to 0.12 and figure 5(d ) shows
that the compression tail is not evident in the infinite-wall case. Now the apparent
contradiction is eliminated: because the compression tail suppresses bubble growth
and such a tail is not created in the infinite-wall case, bubbles grow larger near the
stone for the infinite-wall case.

Away from the stone, the opposite is true because the edge wave focuses the reflected
wave, and consequently, deepens the reflected rarefaction. Thus, the attenuation
(owing to reflection from the stone) of the reflected wave for the flat-stone case is less
than that for the infinite-wall case, and bubbles grow larger away from the stone for
the flat-wall case. Also, figure 11(a) shows the effect of a kidney stone in the flow:
it increases the size to which bubbles grow near the stone. For the no-stone case,
rmax ≈ 0.6. However, with a stone in the flow, rmax ≈ 0.86. On a volume basis, this
corresponds to a doubling of the maximum size to which bubbles grow.

In figure 11(b) this effect is even more pronounced owing to the focusing of waves.
The strongest amplification occurred for the half-concave case in which bubbles
grew to almost five times the size (by volume) of bubbles in a flow without a
stone. Furthermore, the convex case also showed an increase in bubble radii near
the stone, thus establishing that stones increase the cavitation potential of a shock
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wave lithotripter regardless of the shape of the stone. We also see the effect of shock
focusing by the rapid reduction in rmax for the concave cases at about γ = 2.14.

In figure 11(c), the effect of stone composition is seen through the changes in
the maximum radii due to the changes in the reflection coefficient. With increasing
reflection coefficient, the cavitation potential increases near the stone and decreases
further from it. This, too, is attributed to wave interference. Near the stone, an increase
in constructive interference between the reflected and incident wave rarefactions
increases the cavitation potential, and away from the stone, an increase in destructive
interference between the reflected compression and incident rarefaction decreases the
cavitation potential. The difference between a stone that has a reflection coefficient
of 0.25 versus 0.75 may be greater than a factor of three.

We note that an interesting phenomenon in the region near the stone surface occurs
at low reflection coefficient: bubbles grow larger without a stone present than when
a stone with a low reflection coefficient is present. This is due to the compressive tail
caused by the edge wave as described in figure 11(a). As the reflection coefficient
is reduced, the strength of the reflected wave is reduced, and both the reflected
rarefaction and compression tail are reduced proportionally. However, the reduction
in the rarefaction affects bubble growth differently to the reduction in the compression
tail because the compression tail acts on a larger surface area (i.e. when the bubble is
larger). This nonlinearity explains why there should be regimes of reflection coefficients
in which a change in the rarefaction dominates a change in the compression and
regimes in which the effect is reversed. In this problem, at higher reflection coefficients,
the change in the compression tail dominates.

Finally, the enhancement of bubble growth near the proximal surface of a stone
helps explain an interesting mechanism for stone comminution. Suppose a flat (or
even convex) stone is treated with SWL. A region of intense bubble growth will
develop near the proximal surface. As shown in Part 2, these bubbles (or a larger
bubble formed from the coalescence of smaller bubbles) will collapse asymmetrically
and create jets that impact the stone. The result of the impact may be a small crater
in the stone. If this happens, reflected waves from subsequent LSWs will focus along
the symmetry axis of the crater and create even stronger bubble collapses which will
tend to deepen the crater. The consequences of this can be seen in the experimental
photographs by Pishchalnikov et al. (2003) of bubbles growing and collapsing on the
proximal surface as well as the very deep crater that developed after the stone was
treated with 50 LSWs.

5. Conclusions
In conclusion, we have shown how the presence of a kidney stone in the field of

a shock wave lithotripter induces a reflection of the LSW that alters the pressure
field near the stone. This alteration is caused primarily by the interference between
the incident and reflected waves, and secondarily by edge waves that diffract from
the stone. Near the proximal face of the stone, the rarefaction tends to be enhanced
owing to constructive interference and edge-wave focusing. This effect is strongest
for stones with concave faces and higher reflection coefficients. Further away from
the stone, the rarefaction tends to be ameliorated owing to destructive interference
between the reflected compression and the incident rarefaction.

A consequence of the changes to the pressure field induced by the presence of a
stone is an alteration of the maximum size to which bubbles can grow. Near the
stone surface, bubbles grow several times larger owing to the enhancement of the
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rarefaction, regardless of the shape and curvature of the proximal face. Further from
the stone surface, bubbles grow several times smaller owing to destructive interference.
The enhancement of bubble growth near the stone is two-fold for flat/convex faces
and as high as five-fold for concave faces. Also, concave surfaces create a region of
high cavitation potential at the focus of the surface.

Thus, we have shown that the stone and the reflection of the LSW from its
surface play an important role in SWL and should be included in any analysis
of the consequences of cavitation. In addition, experimentalists should be aware
that artificial stones of different shapes and composition (reflection coefficient) alter
the pressure field in different ways. This results in either a decrease or increase in
the cavitation potential for bubbles near the stone, and consequently a decrease or
increase in the vigour of cavitation and its role in stone comminution, respectively.
Finally, the conclusions of this work may be applied to HIFU (high intensity
focused ultrasound) in which bones may play a role similar to reflective kidney
stones.
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Biomedical Engineering. We would like to thank Dr Michael L. Calvisi for helping
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REFERENCES

Averkiou, M. A. & Cleveland, R. O. 1999 Modeling of an electrophydraulic lithotripter with the
KZK equation. J. Acoust. Soc. Am. 106, 102–112.

Bailey, M. R., Pishchalnikov, Y. A., Sapozhnikov, O. A., Cleveland, R. O., McAteer, J. A.,

Miller, N. A., Pishchalnikova, I. V., Connors, B. A., Crum, L. A. & Evan, A. P. 2005
Cavitation detection during shock-wave lithotripsy. Ultrasound Med. Biol. 31, 1245–1256.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics . Cambridge University Press.

Calvisi, M. L., Iloreta, J. I. & Szeri, A. J. 2008 Dynamics of bubbles near a rigid surface subjected
to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation
collapse. J. Fluid Mech. 616, 63–97.

Chaussy, C., Schmiedt, E., Brendel, W., Forssmann, B. & Walther, V. 1982 1st clinical-experience
with extracorporeally induced destruction of kidney-stones by shock-waves. J. Urol. 127, 417–
420.

Church, C. C. 1989 A theoretical study of cavitation generated by an extracorporeal shock wave
lithotripter. J. Acoust. Soc. Am. 86, 215–227.

Cleveland, R. O. & Sapozhnikov, O. A. 2005 Modeling elastic wave propagation in kidney stones
with application to shock wave lithotripsy. J. Acoust. Soc. Am. 118, 2667–2676.

Dahake, G. & Gracewski, S. M. 1997 Finite difference predictions of p-sv wave propagation inside
submerged solids. II. effect of geometry. J. Acoust. Soc. Am. 102, 2138–2145.

Eisenmenger, W. 2001 The mechanisms of stone fragmentation in ESWL. Ultrasound Med. Biol.
27, 683–693.

Heimbach, D., Munver, R., Zhong, P., Jacobs, J., Hesse, A., Müller, S. C. & Preminger,

G. M. 2000 Analysis of Rayleigh–Plesset dynamics for sonoluminescing bubbles. J. Urol. 164,
537–544.

Hilgenfeldt, S., Brenner, M. P., Grossman, S. & Lohse, D. 1998 Analysis of Rayleigh–Plesset
dynamics for sonoluminescing bubbles. J. Fluid Mech. 365, 171–204.

Iloreta, J. I., Szeri, A. J., Zhou, Y. F., Sankin, G. & Zhong, P. 2007 Assessment of shock wave
lithotripters via cavitation potential. Phys. Fluids 19, 086103.

LeVeque, R. J. 1997 Wave propagation algorithms for multidimensional hyperbolic systems.
J. Comput. Phys. 131, 327–353.

Ohl, C. D. 2002 Cavitation inception following shock wave passage. Phys. Fluids 14, 3512–3521.

Ohl, C. D. & Ikink, R. 2003 Shock-wave-induced jetting of micron-sized bubbles. Phys. Rev. Lett.
90, 214502.



Bubbles near a rigid surface subject to a lithotripter shock wave. Part 1 61

Pishchalnikov, Y. A., Sapozhnikov, O. A., Bailey, M. R., Williams, J. C., Cleveland, R. O.,

Colonius, T., Crum, L. A., Evan, A. P. & McAteer, J. A. 2003 Cavitation bubble cluster
activity in the breakage of kidney stones by lithotripter shockwaves. J. Endourol. 17, 435–446.

Pishchalnikov, Y. A., Sapozhnikov, O. A., Bailey, M. R., Pishchalnikova, I. V., Williams, J. C. &

McAteer, J. A. 2005 Cavitation selectively reduces the negative-pressure phase of lithotripter
shock pulses. Acoust. Res. Lett. Online 6, 280–286.

Pishchalnikov, Y. A., McAteer, J. A., Williams, J. C., Pishchalnikova, I. V. & Vonderhaar,

R. J 2006 Why stones break better at slow shockwave rates than at fast rates: in vitro study
with a research electrohydraulic lithotripter. J. Endourol. 20, 537–541.

Pittomvils, G., Lafaut, J. P., Vandeursen, H., Boving, R., Baert, L. & Wever, M. 1995 Ultrasonic
parameters of concentric laminated uric acid stones. Ultrasonics 33, 463–467.

Pittomvils, G., Lafaut, J. P., Vandeursen, H., Boving, R., Baert, L. & Wever, M. 1996 Ultrasonic
velocities of concentric laminated uric acid stones. Ultrasonics 34, 571–574.

Sankin, G. N., Simmons, W. N., Zhu, S. L. & Zhong, P. 2005 Shock wave interaction with
laser-generated single bubbles. Phys. Rev. Lett. 95, 34501.
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